Abstract

Presented are theoretical and experimental results on electrically controlled static and dynamic flexing and deformation of iono-elastic beams made with ionic-polymer metal composite (IPMC) artificial muscles. These composite materials have the capability of large motion sensing and actuation in a biomimetic fashion. The essence of the underlying iono-elastic response of such materials is due to Coulombic electro-dynamic charge interaction amongst a dispersed phase of metallic particles that are charged either positively or negatively, mobile phase of a cation such as hydrogen ions H+ (Protons) or Li+, Hydroxyl anions OH-, and a fixed anionic phase such as an assembly of sulfonates SO3- elastically attached to the backbone polymer network macromolecules. The mathematical model presented is analogous to classical Euler-Bernoulli's beam theory modified to accommodate a non-homoeneous distributed electrically-induced moment due to the presence of a non-homogeneous electric field in an elastic material. The presentation may be extended to materials governed by hyper- elasticity such as in rubber elasticity. Analytical solution obtained agree reasonably well with our experimental results on Cationic Polymer-Platinum Composites (CPPC) which are also reported in this paper.© (1999) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call