Abstract
Electrical properties of tissues in the 10 KHz to 10 MHz range are known to be temperature sensitive making the monitoring and assessment of thermal insult delivered for therapeutic purposes possible through imaging schemes which spatially resolve these changes. We have been developing electrical impedance imaging technology from both the hardware data acquisition and software image reconstruction perspectives in order to realize the capability of spectroscopically examining the electrical property response of tissues undergoing hyperthermia therapy. Results from simulations, in vitro phantom experiments and in vivo studies including in human patients are presented. Specifically, a new prototype multi-frequency data acquisition system which is functional to 1 MHz in both voltage and current modes is described. In addition, recent advances in image reconstruction methods which include the enhancement techniques of total variation minimization, dual meshing and spatial filtering are discussed. It is also clear that the electrical impedance spectrum of tissue has the potential to monitor other types of treatment-induced injury. Preliminary in vivo electrical impedance measurements in a rat leg model suggest that the tissue damage from radiation therapy can be tracked with this technique. Both dose and time-dependent responses have been observed in the electrical impedance data when compared to measurements recorded in an untreated control. Correlations with histological examination have also been performed and indicate that electrical impedance spectroscopy may provide unique information regarding tissue functional status and cellular morphology. Representative results from these studies are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.