Abstract

The Canadian Space Agency (CSA) is developing a pre-operational spaceborne Hyperspectral Environment and Resource Observer (HERO). HERO will be a Canadian optical Earth observation mission that will address the stewardship of natural resources for sustainable development within Canada and globally. To deal with the challenge of extremely high data rate and the huge data volume generated onboard, CSA has developed two near lossless data compression techniques for use onboard a satellite. CSA is planning to place a data compressor onboard HERO using these techniques to reduce the requirement for onboard storage and to better match the available downlink capacity. Anomalies in the raw hyperspectral data can be caused by detector and instrument defects. This work focuses on anomalies that are caused by dead detector elements, frozen detector elements, overresponsive detector elements and saturation. This paper addresses the effect of these anomalies in raw hyperspectral imagery on data compression. The outcome of this work will help to decide whether or not an onboard data preprocessing to remove these anomalies is required before compression. Hyperspectral datacubes acquired using two hyperspectral sensors were tested. Statistical measures were used to evaluate the data compression performance with or without removing the anomalies. The effect of anomalies on compressed data was also evaluated using a remote sensing application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.