Abstract

Many of the experiments to be performed within the various space agencies' microgravity programs are extremely sensitive to low frequency spacecraft vibration. The microgravity isolation mount (MGIM) consists of a free floating platform, accommodated within the spacecraft's experiment racks, which isolates sensitive payloads from ambient disturbances. This paper describes the main features of the MGIM and discusses some of the factors considered when deciding on a control system strategy. The emphasis of the paper is on the trade-off which occurs between the heat dissipation capacity of the thermal subsystem and the achievable microgravity level. Thermal dissipation from the platform is by means of interleaved cooling fins located on both the platform and its enclosure. Theoretical expressions are developed for the force caused by air motion in the gap between the fins and experimental results which verify these expressions are presented. It is shown, by means of computer simulation, that the attainable microgravity quality is limited by the dimensions of the cooling fins required to support a specific payload heat dissipation capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.