Abstract

A finite element model is developed to study the dynamics properties, vibration, shock and acoustics performance of constrained layer damping treated covers for hard disk drives (HDD). The ever-increasing storage density of HDD requires smaller vibration level of HDD components, especially the storage disks inside. In the mean time, tighter vibration, shock and acoustics specifications are required by customers. In practice, it is found that the vibration of the storage disks and the shock/vibration and acoustics performance of HDD are closely related to the properties of the HDD covers. The existence of viscoelastic materials (VEM) inside the HDD covers makes them hard to analyze and the complex modulus provided by VEM manufactures can only be utilized in frequency domain. In this paper, the VEM properties are fitted with GHM (Golla, Hughes and McTavish) parameters so that a complex eigenvalue analysis can be performed to extract modal frequencies and damping of the cover. Parametric study is conducted to understand how some essential design parameters affect the dynamics properties of the cover. Vibration/shock and acoustics responses of the cover are also simulated to provide insights for HDD cover design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.