Abstract

In this paper the theoretical approach to the random data analysis of the non-Gaussian signal of the pulsed Doppler lidar in the turbulent atmosphere is proposed. This approach is based on the use of the results of the statistical study of the non-Gaussian signal when investigating the Doppler shift estimate. It is shown that the instantaneous Doppler shift estimate is approximately proportional to the value of the average radial velocity profile for the large scattering volume length. In the case of the small scattering volume length the instantaneous Doppler shift estimate is approximately proportional to the value of the true radial velocity profile. The measurement error variances of the profiles of the average and true radial wind velocities depend on the parameters of atmospheric turbulence and Doppler lidar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call