Abstract

The paper presents further development of a novel fiber optic low and high hydrostatic pressure sensing technique utilizing new classes of chiral nematic liquid crystals with a significantly reduced thermal sensitivity. The low-pressure sensor is based on polarization effects and employs pressure-induced deformations occurring in a twisted nematic cell. This approach is particularly suitable for measurement of hydrostatic pressure in order of 1 MPa (10 bar) and utilizes strong rotatory power occurring in chiral nematics. In the theoretical part, by using the Berreman 4 X 4-matrix method we present calculations of transmission of a twisted nematic cell. The high pressure sensor is based on intensity phenomena occurring in novel classes of chiral nematics with induced smectic Ad phase and exploits the effect of pressure induced changes in the wavelength of selective Bragg light reflection. The experiment was conducted in a high pressure environment up to 100 MPa (1kbar) and the preliminary data demonstrates a potential of the induced liquid crystal systems for applications in high pressure sensing.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.