Abstract

A method of finding the time dependent resistance and inductance of the discharges in the switch system and laser chamber in pulsed gas lasers is described in the present work. According to this method the current waveform is digitized and the first and second derivative is calculated through a computer. For a certain time instant, substituting the value of the current and its first and second derivative into the integrodifferential equations describing the performance of the circuit loops, we form relationships which connect the values of the resistance and inductance for this particular time instant. Combining relationships originated from very closed adjacent time instants, the values of the resistance and inductance can be found. Scanning the entire time region of the discharge, the time history of the resistances and inductances of the discharges are revealed. Their behavior shows for the resistances an abrupt drop while for the inductances a sharp peak, both during the formation phase. After that the above characteristic quantities fluctuate slowly around constant values.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.