Abstract

X-ray images of pistachio nuts on conveyor trays for product inspection are considered. The first step in such a processor is to locate each individual item and place it in a separate file for input to a classifier to determine the quality of each nut. This paper considers new techniques to: detect each item (each nut can be in any orientation, we employ new rotation-invariant filters to locate each item independent of its orientation), produce separate image files for each item [a new blob coloring algorithm provides this for isolated (non-touching) input items], segmentation to provide separate image files for touching or overlapping input items (we use a morphological watershed transform to achieve this), and morphological processing to remove the shell and produce an image of only the nutmeat. Each of these operations and algorithms are detailed and quantitative data for each are presented for the x-ray image nut inspection problem noted. These techniques are of general use in many different product inspection problems in agriculture and other areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.