Abstract

Ultrasonic transducers having curved radiating surfaces may offer a simple solution to maintaining good lateral resolution over the large depth of field required in medical imaging. In this paper the design considerations for such a transducer that consists of a cylindrical metal housing and an ultrasonic wave generating piezoceramic disc is presented. The mechanism of focusing the radiated ultrasonic wave is studied by changing the geometry of the front surface of the metal housing. The propagation of ultrasonic wave in the surrounding medium is analyzed using the impulse response approach for the near field region and Fraunhofer's approximation for the far field. In addition, modal analysis of the transducer structure is conducted using the finite element method. The results obtained show that the geometry of the transducer housing has significant effects on the radiation characteristics of the transducer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.