Abstract

For future x-ray satellite missions and other applications we propose a novel sensor which is based on the `DEPleted Field Effect Transistor (DEPFET)'. MOS-type DEPFETs (DEPMOS) are employed in prototype designs of pixel detectors ready for production. The device operated on a fully depleted silicon wafer allows an internal charge amplification directly above the position where the signal conversion takes place. A very low gate capacitance of the DEPMOS transistor leads to low noise amplification. In contrast to CCDs neither transfer loss nor `out of time events' can occur in a DEPFET-array. Fast imaging and low power consumption can be achieved by a row by row selection mode. The signal charge stored in a potential minimum below the transistor channel can be read out non destructively and repeatedly. By shifting the charge between two neighboring DEPMOS amplifiers the repeated signal readout leads to significant noise reduction. Concept, design and device simulations are presented and consequences of the expected properties for applications in x-ray imaging are discussed.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.