Abstract
The first and most important objective of any damage identification algorithms is to ascertain with confidence if damage is present or not. Many methods have been proposed for damage detection based on ideas of novelty detection founded in pattern recognition and multivariate statistics. The philosophy of novelty detection is simple. Features are first extracted from a baseline system to be monitored, and subsequent data are then compared to see if the new features are outliers, which significantly depart from the rest of population. In damage diagnosis problems, the assumption is that outliers are generated from a damaged condition of the monitored system. This damage classification necessitates the establishment of a decision boundary. Choosing this threshold value is often based on the assumption that the parent distribution of data is Gaussian in nature. While the problem of novelty detection focuses attention on the outlier or extreme values of the data i.e. those points in the tails of the distribution, the threshold selection using the normality assumption weighs the central population of data. Therefore, this normality assumption might impose potentially misleading behavior on damage classification, and is likely to lead the damage diagnosis astray. In this paper, extreme value statistics is integrated with the novelty detection to specifically model the tails of the distribution of interest. Finally, the proposed technique is demonstrated on simulated numerical data and time series data measured from an eight degree-of-freedom spring-mass system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.