Abstract

These last years, the rapidly growing digital multimedia market has revealed an urgent need for effective copyright protection mechanisms. Therefore, digital audio, image and video watermarking has recently become a very active area of research, as a solution to this problem. Many important issues have been pointed out, one of them being the robustness to non-intentional and intentional attacks. This paper studies some attacks and proposes countermeasures applied to videos. General attacks are lossy copying/transcoding such as MPEG compression and digital/analog (D/A) conversion, changes of frame-rate, changes of display format, and geometrical distortions. More specific attacks are sequence edition, and statistical attacks such as averaging or collusion. Averaging attack consists of averaging locally consecutive frames to cancel the watermark. This attack works well for schemes which embed random independent marks into frames. In the collusion attack the watermark is estimated from single frames (based on image denoising), and averaged over different scenes for better accuracy. The estimated watermark is then subtracted from each frame. Collusion requires that the same mark is embedded into all frames. The proposed countermeasures first ensures robustness to general attacks by spread spectrum encoding in the frequency domain and by the use of an additional template. Secondly, a Bayesian criterion, evaluating the probability of a correctly decoded watermark, is used for rejection of outliers, and to implement an algorithm against statistical attacks. The idea is to embed randomly chosen marks among a finite set of marks, into subsequences of videos which are long enough to resist averaging attacks, but short enough to avoid collusion attacks. The Bayesian criterion is needed to select the correct mark at the decoding step. Finally, the paper presents experimental results showing the robustness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.