Abstract

Copper vapor and copper halide lasers are the most efficient high-power lasers that operate directly in the visible spectral region. In order to scale these lasers to high average powers, it is important to determine the maximum output power that can be generated from a given volume of the active medium, and the discharge conditions for which it can be achieved. In this paper we describe the attainment of a record average specific output power for self-terminating atomic copper lasers of any type. We have performed our experiments with a narrow-bore (4.5 mm) copper bromide laser. From the active volume of 4.77 cm3 a maximum average output power of 6.7 W was reached, which corresponds to the record specific average power of 1.4 W/cm3. The discharge was excited with a pulse recurrence frequency of 52 kHz. The tube was sealed with pressure of 20 torr neon, to which was added 0.3 torr of hydrogen. We describe the design and construction of the laser tube, the excitation circuit and the discharge conditions which allowed these results to be obtained.© (1994) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.