Abstract
In recent studies, neural network based controllers for vibration suppression of smart structures have been reported. Many of these controller have been successfully implemented in simulation as well as using PC based data acquisition hardware. These studies have shown that in addition to conventional controller design methodologies, neural networks offer an effective basis for design and implementation of controllers. With the introduction of the Electronically Trainable Analog Neural Network (ETANN) chip i80170NX by Intel and a digital neural network chip Ni1000 by Nestor Corp., hardware implementation of neural network based controllers has been made possible. These neural network chips have also found applications in other areas such as signal processing and character recognition. In this paper, the capabilities of the ETANN based robust controllers for smart structural systems have been investigated. Robust controllers like the Liner Quadratic Regulator (LQR) and Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) are implemented on a cantilevered plate system using the ETANN chip. Specially shaped PVDF film is used as sensors and PZTs as actuators. The LQG/LTR controller is implemented in two neural network configurations for dynamical systems suggested by Narendra and Parathasarathy. Analog hardware components used in the interface between the ETANN chip and the actuators/sensors on the smart structure test article have been developed. Practical considerations and limitations of the fully analog implementation of the controllers which are not considered in simulations have been discussed in the paper. Practical consideration in training the analog neural network chip for optimal performance has also been described. Experimental results of the closed loop performance of the smart structural system are presented.© (1996) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.