Abstract

In this paper, we describe how three conventional segmentation methods can be generalized to handle color images. The segmentation algorithms we consider are: (1) seed based region growing, (2) directional derivative based edge detection, and (3) recursive split and merge. We then evaluate the effectiveness of these techniques using color difference metrics associated with four different color spaces and a variety of real and synthetic color images. The four color spaces we evaluate are: (1) the spectral primary system (RGB), (2) the NTSC transmission system (YIQ), (3) the hue saturation and brightness system (HLS), and (4) the CIE perceptually uniform space (LAB). We compare these segmentation results using real and synthetic color images which have been 'hand segmented' to determine true object boundaries.© (1992) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.