Abstract

Signalizing points of interest on the object to be measured is a reliable and common method of achieving optimum target location accuracy for many high precision measurement tasks. In photogrammetric metrology, images of the targets originate from photographs and CCD cameras. Regardless of whether the photographs are scanned or the digital images are captured directly, the overall accuracy of the technique is partly dependent on the precise and accurate location of the target images. However, it is often not clear which technique to choose for a particular task, or what are the significant sources of error. The research described in this paper describes aspects of target recognition, thresholding, and location. The results of a series of simulation experiments are used to analyze the performance of subpixel target location techniques such as: centroiding; Gaussian shape fitting; and ellipse fitting, under varying conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.