Abstract
In an adaptive optics system with an undersampled Shack- Hartmann wavefront sensor (WFS), variations in seeing, laser guide star quality, and sodium layer thickness and range distance all combine to vary WFS centroid gain across the pupil during an exposure. While using the minimum of four pixels per WFS sub-aperture improves frame rate and read noise, the WFS centroid gain uncertainty may introduce static aberrations and degrade servo-loop phase margin. In a recent paper, we have presented a novel method to estimate and compensate WFS gains of each sub-aperture individually in real time for both natural and laser guide stars. In this paper, we address additional issues related to the implementation of this method in a real system such as Altair for Gemini North.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.