Abstract

An instrument for the measurement of ball diameters in the 0.5-20 mm range in a gauge block interferometer is realized. The measurement principle is that the ball is positioned between an optical flat and a calibrated gauge block. The total length is measured in a gauge block relative to the optical flat and proper measurement of the deformations due to the measuring force. The parallelism is adjusted while viewing the interference patterns on the gauge block and the optical flat. The measuring force can be varied in the 0.03- 2.35 N range. The applied force is calibrated. Experiments show that commonly used formulas to calculate the ball indentation as a function of the applied force are approximately correct; this instrument however provides a direct means to measure this dependence and to apply a proper extrapolation to zero measuring force. The design is rather compact so it will fit in commonly used gauge block interferometers. The uncertainty which can be achieved is less than 0.1 micrometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call