Abstract

The University of Dayton Research Institute has developed a system for the automated reduction of straight-line and circular fringe patterns. The system was designed for the Air Force Weapons Laboratory at Kirtland Air Force Base and is composed of three major hardware components: an automated pattern processor (ZAPP); a computer-controlled television-based digitizer (EyeCom); and a PDP-11/34 minicomputer. The ZAPP scans straight-line fringe patterns, displays the fringe center coordinates, and computes the peak-to-valley and RMS wavefront. The computer processes the fringe coordinates for wavefront analysis. When fully operational, the EyeCom will digitize circular fringe patterns, and then the fringe-acquisition program will manipulate the data to provide appropriate inputs for wavefront analysis. Outputs of the computer analysis are wavefront deviation, Seidel aberrations, Zernike coefficients, diffraction intensity spread function, Strehl ratio, optical transfer function, and geometric spot diagrams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call