Abstract

The presentation focuses on the peculiarity of Asian waters with respect to the atmospheric correction of the satellite ocean color data such as of Ocean Color and Temperature Scanner (OCTS). We first demonstrate the effect of highly turbid case 2 waters on the atmospheric correction via non- zero water reflectance in the near infrared region. The results of applying the OCTS standard correction scheme to typical Chinese coastal OCTS scenes reveal that a significant portion of the area is masked due to the negative water reflectance retrieved by the scheme, even using 765 nm and 865 nm bands instead of 670 and 865 nm pair to determine aerosol contribution. An optical model that relates suspended solid (SS) and chlorophyll-a (Chl-a) concentrations to the near infrared water reflectances was implemented into the atmospheric correction, together with a neural network that estimates Chl-a and SS concentrations. The new iterative scheme is applied to the Chinese coastal scenes and the results are assessed to be favorable. The paper then discuss the modeling of Asian dust aerosol in hope of establishing aerosol models that can be used for atmospheric correction. A set of models are designed with varying controlling parameters such as size distribution, vertical profile, and imaginary part of the refractive index. A series of radiative transfer simulation is conducted and the spectrum of the top-of- atmosphere radiance is compared to that of a Sea Wide Filed- of-view Scanner (SeaWiFS) data obtained under Asian dust event. The results of the comparison suggest that the Asian dust aerosol has unique spectral absorption feature at the blue region (in 412 nm band, i.e.).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.