Abstract
The purpose of this research is to investigate the effectiveness of our novel dynamic range compression for chest radiographs. Dynamic range compression preserves detail information, making diagnosis easier when using narrow dynamic range viewing systems such as monitors. First, an automated segmentation method was used to detect the lung region. The combined region of mediastinum, heart and subdiaphragm was defmed based on the lung region. The coffelated distributions, between a pixel value and its neighboring averaged pixel value, for the lung region and the combined region were calculated. According to the appearance of overlapping of two distributions, the warping function was decided. After pixel values were warped, the pixel value range of the lung region was compressed while preserving the detail information. The perfonnance was evaluated with our criterion function which was the contrast divided by the moment. For seventy-one screening chest images from Johns Hopkins University Hospital, this method improved our criterion function at 1 1 .7% on average. The warping transformation algorithm based on the correlated distribution was effective in compressing the dynamic range while simultaneously preserving the detail information. Key Words: Dynamic Range Compression, Chest Radiograph, Anatomic Information, Lung Region, Image Processing, Correlated Distribution, Warping Transformation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.