Abstract

Passive constrained layer (PCL) damping treatments have been shown to be a very effective and reliable method for the damping of structures and have been implemented successfully in many commercial and defense designs for the aerospace and automotive industries. A conventional passive constrained layer damping treatment consists of a viscoelastic layer sandwiched between the vibrating structure and a cover layer. In a passive stand-off layer (PSOL) damping treatment, a stand-off or spacer layer is added to a conventional passive constrained layer damping treatment between the vibrating structure and the viscoelastic layer. The addition of this stand-off layer increases the distance of the viscoelastic and constraining layers from the neutral axis of the vibrating structure. This is thought to enhance damping by increasing the shear angle of the viscoelastic layer. To investigate how the bending and shearing rigidities of the stand-off layer (SOL) affect the damping performance, an analytical model has been developed for a PSOL damping treatment applied to an Euler-Bernoulli beam. In this paper, the equations of motion are derived and solved. The resulting simulations of the frequency response are then discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call