Abstract

This paper analyzes the UXO classification capabilities of the GEM-3 using data collected for the Advanced UXO Detection/Discrimination Technology Demonstration at the U.S. Army Jefferson Proving Ground (JPG), Madison, Indiana. The approach taken in the US Army Engineer Research and Development Center (ERDC) analysis of the performance of the GEM-3 at JPG was to extract data points collected near each of the actual target locations and compare them to the calibration data acquired with known targets at the beginning of the demonstration. This was done to determine how well the data collected near each actual target matched the calibration signatures for the same ordnance type and the extent to which the data could be differentiated from other ordnance types and non-ordnance clutter. Classification of the targets was performed using a simple template-matching algorithm. This procedure resulted in an exact classification match for nearly half of the targets for which calibration data were available and a match to a similarly sized target for more than two-thirds of the medium and large targets. The sensor coverage of the test areas and the effect of test parameters such as ordnance size and depth on classification performance were also examined. New data were acquired with the GEM-3 to investigate the statistical variability of the instrument.© (2002) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.