Abstract

A quantum amplifier model is used to simulate semiconductor laser operation in the presence of quantum fluctuations. The model explicitly takes into account of the finite dipole dephasing time of the lasing medium and the longitudinal non-uniformity of carrier and photon distributions. Quantum fluctuations are considered by regarding each of the spontaneous, stimulated emission and absorption processes as random processes obeying Poisson statistics. The simulation results agrees with conventional traveling wave rate equation approach in the absence of noise. However, with the presence of quantum fluctuations, the laser output experiences pulsation at the period of cavity round-trip time. The pulsation behavior is heavily dependent on the finite dipole dephasing time and the nonlinear gain constant of the lasing medium. By appropriately adjusting the mode-lock condition of a high speed laser diode, ultrashort pulse train can be obtained from the laser diode with external cavity repetition frequency.© (1991) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call