Abstract

In this paper several methods for image lossy compression are compared in order to find adaptive schemes that may improve compression performance for hyperspectral images under a classification accuracy constraint. Our goal is to achieve high compression ratios without degrading classification accuracy too much for a given classifier. Lossy compression methods such as JPEG, three-dimensional JPEG, a tree structured vector quantizer, a zero- tree wavelet encoder, and a lattice vector quantizer have been used to compress the image before the classification stage. Classification is carried out through classification trees. Two kinds of classification trees are compared: one- stage trees, which classify the input image using only a single classification stage; and multi-stage trees, which use a mixed class that delays the classification of problematic pixels for which the accuracy achieved in the current stage is not enough. Our experiments indicate that is is possible to achieve high compression ratios while maintaining the classification accuracy. It is also shown that compression methods that take advantage of the high band correlation of hyperspectral images provide better results and become more flexible for a real case scenario. As compared to one-stage trees, the employment of multi-stage trees increases the classification accuracy and reduces the classification cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.