Abstract

For downward looking GPR landmine detection systems, the return from the ground surface, i.e., the ground bounce, often surpasses the actual mine return and makes it almost impossible to detect the landmines, especially the buried plastic landmines. The ground bounce is difficult to remove due to the roughness of the ground surface and/or the changing soil conditions. In this paper, a robust and efficient ground bounce removal algorithm, referred to as ASaS (Adaptive Shift and Scale), is presented. ASaS takes into account the variations of the ground bounce by adaptively selecting a reference ground bounce. The shifted and scaled version of the reference ground bounce is used as the estimate of the ground bounce in the current scan. Two adaptive reference selection schemes for ASaS are given and compared with each other. Experimental results based on the data collected by the PSI GPSAR system are used to demonstrate the effectiveness of the adaptive schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.