Abstract

NASA's Marshall Space Flight Center has developed an active sensor system, the ideo guidance sensor (VGS), to provide near-range relative position and attitude data. The VGS will be part of an automatic rendezvous and docking system. The VGS determines the relative positions and attitudes between the active sensor and the passive target. It works by using laser diodes to illuminate the retro-reflectors in the target, a solid-state camera to detect the return from the target retro-reflectors, and a frame grabber and digital signal processor to convert the video information into relative positions and attitudes. The current sensor design is the result of several years of development and testing, and it is being built to fly as an experiment payload on the space shuttle. The VGS system is designed to operate with the target completely visible within a relative azimuth of +/- 10.5 degrees and a relative elevation of +/- 8 degrees. The system will acquire and track and target within that field-of-view anywhere from 1.0 meters to 110 meters range at any relative roll angle and relative pitch and yaw attitudes of up to +/- 10 degrees. The data is output from the sensor at 5 Hz, and the target and sensor software have been designed to permit two independent sensors to operate simultaneously for redundancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.