Abstract

All Cassegrain spectrographs suffer from gravitationally- induced flexure to some degree. While such flexure can be minimized via careful attention to mechanical design and fabrication, further performance improvements can be achieved if the spectrograph has been designed to minimize hysteresis and has active compensation for any residual flexure. The Echellette Spectrograph and Imager (ESI), built at UCO/Lick Observatory for use at Cassegrain focus on Keck II, compensates for such residual flexure via its collimator mirror. The collimator is driven by three actuators that provide control of collimator focus, tip, and tilt. The ESI control software utilizes a mathematical model of gravitationally-induced flexure to periodically compute and apply flexure corrections by commanding the corresponding tip and tilt motions to the collimator. In addition, the ESI control software provides an optional, manual, closed-loop method for adjusting the collimator position to compensate for any non-repeatable errors. Such errors may result from mechanical hysteresis or from thermally-induced structural deformations of the instrument and are thus not accounted for by the gravitational flexure model. This method relies on measuring the centroid position of fiducial spots within each echellete image. The collimator is adjusted so that the positions of these spots match those in a reference image. These spots are produced by a small round hole in the slit mask located near one end of the slit. We discuss the design and calibration of this flexure compensation system and report on its performance ont he telescope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call