Abstract
Electro-absorption modulated sources are likely to be key components in the evolution of optical communication line rates from 10Gb/s to 40 Gb/s. Compared with the LiNbO3 alternative EA modulators are more compact, less expensive, compatible with monolithic integration, and offer lower drive voltages. However, fabrication complexity and open questions concerning the fidelity with which they transmit information make the exact role of 40Gb/s EA modulators in advanced communication systems somewhat unclear. In this talk we will describe the design, fabrication and transmission performance of 40Gb/s EA modulators configured for both NRZ and RZ operation. For NRZ transmission the device structure consists of a short MQW modulator with spot-size converters on the input and output ends. Tandem EA modulators for pulse carver and data encoder functions were monolithically integrated along with a semiconductor optical amplifier and input/output spot-size converters to explore RZ transmission. Both single and tandem modulator design are realized using semi-insulting InP current confined buried heterostructure technology. Modulation bandwidth of better than 50 GHz is demonstrated along with a fiber-to-fiber insertion loss of less than 6 dB for the single modulator design. The carver/encoder configuration with onboard SOA yields better than 0 dB insertion loss. Transmission impairments were studies using both designs.© (2001) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.