Abstract

The present paper deals with the computation of Laser stations coordinates and Earth Orientation Parameters (EOP) based on measurements of low Earth orbit (LEO) satellites, namely Starlette (STA) and Stella (STL). The orbits of these satellites are less accurate than those of the LAGEOS satellites (usually used for an accurate calculation), because they are more affected by gravitational and non-gravitational forces. The objective is to achieve a good quality on the geodetic products by inter-satellite combination of Low and High satellites data. The orbit computation of the different satellites is performed by the GINS software (GRGS/France) and the laser data processing is carried out by the MATLO software (IGN, OCA/France), considering the use of gravity field model (Eigen_Grace-03s) of GRACE satellite, over a period of 04 years (between January 2002 and December 2005). The results in terms of time series are projected onto the reference frame ITRF2000 by the CATREF software (IGN/France), where the Helmert transformation parameters are obtained. Two solutions were compared: LA1 + LA2 (LL) and LA1 + LA2 + STL + STA (LLSS), in terms of quality time series of residual positions of stations, EOP and Geocentre variations. The results show that the data obtained from LEO satellites such as Starlette and Stella can be successfully used in the accurate determination of Laser geodetic products.

Highlights

  • Satellite Laser Ranging (SLR) is one of the main techniques of the determination of the International Terrestrial Reference Frame (ITRF)

  • The computation of the laser ranging stations coordinates on the basis of other data than LAGEOS-I/-II observations is desirable for the following reasons: (1) significantly increases the number of observations used for determination of the stations coordinates and Earth Orientation Parameters (EOP), (2) verification of results obtained from the LAGEOS-I/-II data, (3) determination of station coordinates that cannot range to LAGEOS satellites

  • Interesting results of the stations coordinates determination were obtained for Low Earth Orbit (LEO) satellite for short period of 01 year only [8].The objective of our study is to check if the laser ranging observations of Starlette and Stella can be used for a precise determination of the laser ranging station coordinates and EOP, and to investigate the contribution of these LEO data for the geodynamic study of the stations behaviour, pole and Geocentre motions

Read more

Summary

Introduction

Satellite Laser Ranging (SLR) is one of the main techniques of the determination of the International Terrestrial Reference Frame (ITRF). It contributes to the frame determination by providing time series of laser stations coordinates and Earth Orientation Parameters (EOPs). Interesting results of the stations coordinates determination were obtained for LEO satellite for short period of 01 year only [8].The objective of our study is to check if the laser ranging observations of Starlette and Stella can be used for a precise determination of the laser ranging station coordinates and EOP, and to investigate the contribution of these LEO data for the geodynamic study of the stations behaviour, pole and Geocentre motions. The analysis of SLR geodetic products time series based on (i) frequency analysis by FAMOUS software (OCA/France) [9], and (ii) noise estimation (type and level noise) by Allan variance method [4]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.