Abstract
Water-soluble chiral graphene quantum dots (GQDs) with a strong blue emission were synthesized by covalently immobilizing l-cysteine or d-cysteine onto the GQDs. Either the amine or the thiol group of cysteine was used to make the bond through amide coupling or thiol-ene click chemistry respectively. The functionalized chiral GQDs were the characterized by FT-IR and UV–vis. The enantiomeric pairs exhibit equal but opposite bands in circular dichroism spectra suggesting that there is no difference in the efficacy of conjugation. The fluorescent response of these chiral GQDs when exposed to l-tryptophan was then studied. The fluorescence of the amide-conjugated GQDs was quenched with the addition of l-Trp regardless of which enantiomer of cysteine was present on the surface. The thiol-linked d- Cys GQDs fluorescence was also quenched on exposure to l-Trp, but the fluorescence of the thiol-linked l-Cys GQDs was unaffected under the same conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.