Abstract
Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LIPID TRANSFER PROTEIN 2 (LTP2) greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild-type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.