Abstract
The establishment of axon‐dendrite polarity is fundamental for radial migration of neurons, cortical patterning, and formation of neuronal circuits. Here, we show that the receptor tyrosine kinases, Ltk and Alk, are required for proper neuronal polarization. In isolated primary mouse embryonic neurons, the loss of Ltk and/or Alk causes a multiple axon phenotype. In mouse embryos and newborn pups, the absence of Ltk and Alk delays neuronal migration and subsequent cortical patterning. In adult cortices, neurons with aberrant neuronal projections are evident and axon tracts in the corpus callosum are disrupted. Mechanistically, we show that the loss of Alk and Ltk increases the cell‐surface expression and activity of the insulin‐like growth factor 1 receptor (Igf‐1r), which activates downstream PI3 kinase signaling to drive the excess axon phenotype. Our data reveal Ltk and Alk as new regulators of neuronal polarity and migration whose disruption results in behavioral abnormalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.