Abstract
In recent years, Radio frequency (RF) sensor networks have been used to localize people indoor without requiring them to wear invasive electronic devices. These wireless mesh networks, formed by low-power radio transceivers, continuously measure the received signal strength (RSS) of the links. Radio Tomographic Imaging (RTI) is a technique that generates, starting from these RSS measurements, 2D images of the change in the electromagnetic field inside the area covered by the radio transceivers to spot the presence and movements of animates (e.g., people, large animals) or large metallic objects (e.g., cars). Here, we present a RTI system for localizing and tracking people outdoors. Differently than in indoor environments where the RSS does not change significantly with time unless people are found in the monitored area, the outdoor RSS signal is time-variant, e.g., due to rainfall or wind-driven foliage. We present a novel outdoor RTI method that, despite the nonstationary noise introduced in the RSS data by the environment, achieves high localization accuracy and dramatically reduces the energy consumption of the sensing units. Experimental results demonstrate that the system accurately detects and tracks a person in real-time in a large forested area under varying environmental conditions, significantly reducing false positives, localization error and energy consumption compared to state-of-the-art RTI methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.