Abstract

Dependence of the mechanical properties of PM extruded titanium with the silicon nitride (Si3N4) on solid phase decomposition of Si3N4 was investigated. Si3N4 particles within Ti composite powder were decomposed during spark plasma sintering at 1223 K with 30 MPa pressure for 3.6 ks; and then, decomposition by-products of nitrogen and silicon atoms were defused into titanium matrix. The extruded Ti-1.0 mass% Si3N4 composite showed ultimate tensile strength (UTS) of 1139 MPa, and yield stress (0.2%YS) of 1065 MPa. UTS and 0.2%YS of P/M extruded Ti-1.0 mass% Si3N4 composite were 2 and 2.5 times compared to extruded pure Ti powder material, respectively. It was considered that the solid solution strengthening of both nitrogen and silicon originated from Si3N4 caused the high strength of PM extruded Ti-1.0 mass% Si3N4 composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.