Abstract

Francisella tularensis, a potential bioterrorism agent, is transmitted by arthropod vectors and causes tularemia in many mammals, including humans. Francisella novicida causes disease with similar pathology in mice. We show that F. novicida invades hemocyte-like cells of the SualB cell line derived from Anopheles gambiae and replicates vigorously within these cells. We used transposon knockouts of single genes of F. novicida to show that bacterial growth within these insect cells is dependent on virulence factors encoded in a bacterial pathogenicity island that has been linked to replication in mammalian macrophages. The virulence factors MglA, IglA, IglB, IglC, and IglD as well as PdpA and PdpB were necessary for efficient growth in insect cells, but PdpC and PdpD were not required. The SualB cell line presents a valuable model to study the interactions between this important pathogen and insect vectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call