Abstract

Neuromorphic architectures have seen a resurgence of interest in the past decade owing to 100x-1000x efficiency gain over conventional Von Neumann architectures. Digital neuromorphic chips like Intel's Loihi have shown efficiency gains compared to GPUs and CPUs and can be scaled to build larger systems. Analog neuromorphic architectures promise even further savings in energy efficiency, area, and latency than their digital counterparts. Neuromorphic analog and digital technologies provide both low-power and configurable acceleration of challenging artificial intelligence (AI) algorithms. We present a hybrid analog-digital neuromorphic architecture that can amplify the advantages of both high-density analog memory and spike-based digital communication while mitigating each of the other approaches' limitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.