Abstract

Gold nanoparticles (AuNPs) are nanodevices that can have many uses in biomedical applications but sometime they show nanotoxic effects on biological system. Among these effects, the activation of the innate immune system (inflammatory response) is considered a central issue for assessing health risks of Au NPs. Although the origin of this nanotoxicity is not well known, the cause could be associated to the presence of contaminants on nanoparticles’ surface, such as bacterial endotoxin. Bacterial Endotoxin, also known as Lipopolysaccharide (LPS), is the main component on cell walls of gram-negative bacteria and it is considered one of the major contaminant in the environment. The main goal of this study is to identify and analyse the activation of the inflammatory response associated to AuNPs and/or to the presence of LPS on the nanoparticles’ surface. To this aim, the interaction of AuNPs with LPS is analysed, the presence of LPS molecules on NPs is quantified, and the interaction of AuNPs with human primary macrophages is investigated, in order to distinguish the intrinsic NPs biological effects from those induced by LPS. LPS dose-dependent adsorption on 50 nm AuNPs was studied by DLS and by SERS technique in order to understand the amount of LPS that binds to NPs surface and quantify it. Internalization of bare and LPS coated 50 nm AuNPs was studied in macrophages by TEM and Raman imaging and their inflammatory effect was studied by in vitro stimulation through evaluation of inflammatory cytokine production (TNF-α). DLS results indicate that a uniform LPS corona (8712 molecules) is formed around all NPs (2 µg) when incubated with doses greater than 500 ng, while analysis of SERS signals show a Limit of Detection (LOD) for LPS amount of the order of fg. These promising results show how SERS technique can be a reliable LPS-Sensor, while NPs imaging studies showed that NPs are localized in cytoplasmic vesicles inside macrophages. Moreover, bare NPs do not induce the production of TNF-α cytokine in treated macrophages.

Highlights

  • Gold nanoparticles (Au NPs) are nanodevices that can have many uses in biomedical applications but they show in some cases nanotoxic effects on biological systems [1]

  • LPS Raman spectrum and its SERS signal were acquired in order to characterize LPS molecule and quantify its presence on AuNPs (C) [4]

  • Internalization process of AuNPs in human primary macrophages was studied with TEM and Raman imaging (D and E) [5]

Read more

Summary

Introduction

Gold nanoparticles (Au NPs) are nanodevices that can have many uses in biomedical applications but they show in some cases nanotoxic effects on biological systems [1]. 0 20 40 60 80 100 120 140 Hydrodynamic Diameter (nm) -100 -50 0 50 100 z - potential (mV)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.