Abstract

Vehicular Ad Hoc Networks (VANETs) is an important field of study nowadays. VANETs attracts attention of vehicles communication researcher due to its potential to improve vehicle road safety, enhance traffic and travel efficiency, and provide convenience and comfort for passengers and drivers. Due to the fact that modern life, especially when travelling in vehicles, is in need for high throughput, this paper investigates the Block Error Rate (BLER) and throughput performance of vehicle-to-Infrastructure (V2I) communication between LTE node and vehicles in urban-low environment using two different stochastic channel model used urban-low areas because urban-low speed areas is the common road situation for a large number of users require connection with LTE node. Vehicle-to-Infrastructure - Urban (V2I-U) is used in urban areas and Vehicle-to-Infrastructure – Urban Small intersection (V2I-US) channel model, used as a reference model, has the largest maximum excess delay near to the 3GPP Extended Vehicular A (EVA) channel model. The performed simulation is done at low speed, 40 km/h in 10 MHz bandwidth for the 2.6 GHz carrier frequency. Results show that V2I-U meets the highest value in the throughput that reaches 20 Mbps as those obtained from the EVA one without huge effect on the BLER. This result can be attributed to the fact of using Line-of-Sight (LoS) which leads to less dispersion of the frequency and less doppler frequency shift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.