Abstract

Mitigating multipath of cellular long-term evolution (LTE) signals for robust positioning in urban environments is considered. A computationally efficient receiver, which uses a phase-locked loop (PLL)–aided delay-locked loop (DLL) to track the received LTE signals, is presented. The PLL-aided DLL uses orthogonal frequency division multiplexing (OFDM)–based discriminator functions to estimate and track the time-of-arrival. The code phase and carrier phase performances in an additive white Gaussian noise (AWGN) channel are evaluated numerically. The effects of multipath on the code phase and carrier phase are analyzed, demonstrating robust multipath mitigation for high transmission LTE bandwidths. The average of the DLL discriminator functions over multiple LTE symbols is presented to reduce the pseudorange error. The proposed receiver is evaluated on a ground vehicle in an urban environment. Experimental results show a root mean square error (RMSE) of 3.17 m, a standard deviation of 1.06 m, and a maximum error of 6.58 m between the proposed LTE receiver and the GPS navigation solution over a 1.44 km trajectory. The accuracy of the obtained pseudoranges with the proposed receiver is compared against two algorithms: estimation of signal parameters by rotational invariance techniques (ESPRIT) and EKAT (ESPRIT and Kalman filter).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.