Abstract
The notions of continuity was generalized in the fuzzy setting by Chang (1968). Later on Azad (1981) introduced some weaker form of fuzzy continuity like fuzzy almost continuity, fuzzy semi-continuity and fuzzy weak continuity. These are natural generalization of the corresponding weaker forms of continuity in topological spaces. Recently Arya and Singal (2001a and b) introduce another weaker form of fuzzy continuity, namely fuzzy subweakly continuity as a natural generalization of subweak continuity introduced by Rose (1984). In this paper we introduce fuzzy weak continuity in mixed fuzzy topological space.
Highlights
Funções contínuas fracas sobre espaços topológicos difusos misturadosAs noções de continuidade foram generalizados no ambiente difuso de Chang (1968)
The notion of topological space has been generalized in many ways
Mixed topology lies in the theory of strict topology of the spaces of continuous functions on locally compact spaces
Summary
As noções de continuidade foram generalizados no ambiente difuso de Chang (1968). Mais tarde, Azad (1981) apresentou formas mais fracas de continuidade difusa, como continuidade quase difusa, semi-continuidade difusa e continuidade difusa fraca. São generalizações naturais das formas correspondentes de continuidades mais fracas em espaços topológicos. Recentemente, Arya e Singal (2001a e b) apresentaram uma outra forma mais fraca de continuidade difusa, ou seja, continuidade subfraca difusa como uma generalização natural da continuidade sub-fraca de Rose (1984). Apresenta-se nesse trabalho a continuidade fraca difusa no espaço topológico difuso misto. Palavras-chave: continuidade fraca difusa, ponto difuso, espaço topológico difuso misto, sub-espaço difuso
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.