Abstract

The paper describes a quantitative structure-activity relationship (QSAR) study of IC 50 values of benzimidazole derivatives on escherichia coli methionine aminopeptidase. The activity of the 32 inhibitors has been estimated by means of multiple linear regression (MLR) and artificial neural network (ANN) techniques. The results obtained using the MLR method indicate that the activity of derivatives of benzimidazoles on Co II -loaded escherichia coli methionine aminopeptidase depend on different parameters containing topological descriptors, Burden eigen values, 3D MoRSE descriptors and 2D autocorrelation descriptors. The best artificial neural network model is a fully-connected, feed forward back propagation network with a 5-4-1 architecture. Standard error for the training set using this network was 0.193 with correlation coefficient 0.996 and for the prediction set standard error was 1.41 with correlation coefficient 0.802. Comparison of the quality of the ANN with different MLR models showed that ANN has a better predictive power. KEY WORDS : QSAR, Artificial neural network, Multiple linear regression, Molecular descriptors, Escherichia coli methionine aminopeptidase Bull. Chem. Soc. Ethiop. 2010 , 24(3), 317-325.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.