Abstract

Diethylenetriamine was oxidised in different electrolytes on platinum electrode. In non-aqueous electrolyte, an irreversible oxidation peak characteristic of DETA oxidation appears on the voltammogram followed by a constant current until the higher limit of the sweeping potential domain is attained. The following successive scans showed a high decrease of the current intensity and that is due to the formation of an insulating coating layer on the electrode surface. When water is added to the non-aqueous electrolyte, a DETA oxidation wave appears on the voltammograms. That oxidation wave is observed on the following scans. Indeed, DETA oxidation mechanism seems to be different either the electrolyte is free or not of water. In non-aqueous electrolyte, DETA oxidation leads to electrode surface covering by a thin polymeric film but in water containing electrolyte, oxygen evolution occurs and DETA oxidation leads to uncoated surface by producing aldehyde and amine through imine hydrolysis. KEY WORDS: Non-aqueous electrolyte, Coating, Oxidation, Diethylenetriamine, Imine, Chelating agent, Cyclic voltammetry Bull. Chem. Soc. Ethiop. 2006, 20(2), 269-277.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.