Abstract

In this note, we develop an H/sub /spl infin//-type theory for a large class of discrete-time nonlinear stochastic systems. In particular, we establish a bounded real lemma (BRL) for this case. We introduce the notion of stochastic dissipative systems, analogously to the familiar notion of dissipation associated with deterministic systems, and utilize it in the derivation of the BRL. In particular, this BRL establishes a necessary and sufficient condition, in terms of a certain Hamilton Jacobi inequality (HJI), for a discrete-time nonlinear stochastic system to have l/sub 2/-gain/spl les//spl gamma/. The time-invariant case is also considered as a special case. In this case, the BRL guarantees necessary and sufficient conditions for the system to have l/sub 2/-gain/spl les//spl gamma/, by means of a solution to a certain algebraic HJI. An application of this theory to a special class of systems which is a characteristic of numerous physical systems, yields a more tractable HJI which serves as a sufficient condition for the underlying system to possess l/sub 2/-gain/spl les//spl gamma/. Stability in both the mean square sense and in probability, is also discussed. Systems that possess a special structure (norm-bounded) of uncertainties in their model are considered. Application of the BRL to this class of systems yields a linear state-feedback stabilizing controller which achieves l/sub 2/-gain/spl les//spl gamma/, by means of certain linear matrix inequalities (LMIs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.