Abstract

Hf/Fe multilayers are soft magnetic materials and are a good candidate for magnetic heads of storage devices. We have investigated Hf/Fe multilayers using time-differential perturbed angular correlation (TDPAC) spectroscopy of 1 8 1 Ta (← 1 8 1 Hf), examining specifically the magnetic nature of the non-magnetic Hf layers sandwiched between two ferromagnetic Fe layers. We prepared multilayer samples with Hf layers of various thicknesses, [Hf(x nm)/Fe] n (x = 0.5, 1.0, 2.0, 4.8, 10.0). Three different hyperfine magnetic fields 53(1) T, 43(1) T and 2(1) T were detected in the samples of [Hf (2 nm, 4.8 nm, 10 nm)/Fe] n . The hyperfine magnetic field of 53(1) T corresponds to Hf atoms in a turbulent interface between the Hf and Fe layers. The value of 43(1) T corresponds to Hf atoms inside Hf layers within 0.5 nm from the interface. The value of 2(1) T corresponds to Hf atoms inside the Hf layers within 3.5 nm of the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.