Abstract

Nano-bacterial cellulose (nBC), secreted by Acetobacter xylinum, is expected to have potential applications in tissue engineering. In this paper, the in-vitro degradation performance and the corresponding mechanism of nBC immersed in phosphate buffer solution (PBS) for different time periods was investigated. The pH value variation of solution, material degradation, and the swelling and structural changes of nBC was analysed successively. The results indicate that water molecules attack the exposed nBC fibrils, weakening the bonding strength of inter- and intra-molecular chains and disconnecting partial C-O-C bonds. The disconnection of C-O-C bonds is considered the primary reason for the degradation of nBC large molecular chains after nBC is immersed in PBS. The present work is instructive for controlling the in-vivo degradation performance of nBC acting as bone tissue engineered scaffold materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.