Abstract

Nitrogen (N) is often the key nutrient limiting primary production in coastal waters. Quantifying sources and sinks of N is therefore critical to understanding the factors that underpin the productivity of coastal ecosystems. Constraining nitrogen inputs can be difficult for some terms such as N fixation and marine exchange as a consequence of uncertainties associated with scaling and stochasticity. To help overcome these issues, we undertook a N budget incorporating an isotope and mass balance to constrain N sources in a large oligotrophic coastal embayment (Western Port, Australia). The total N input to Western Port was calculated to be 1400Mg Nyear<sup>−1</sup>, which is remarkably consistent with previous estimates of sedimentation rates within the system. Catchment inputs, N fixation, marine sources and atmospheric deposition comprised 44, 28, 28 and 13% of N inputs respectively. Retention of marine-derived N equated to ~3 and ~10% of total N and NO<sub><i>x</i></sub> flushed through the system from the marine end-member. The relatively high contribution of N fixation compared with previous studies was most likely to be due to the high proportion of nutrient-limited intertidal sediments where N is mediated by seagrasses and sediment cyanobacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call