Abstract

Mutations in the ATRX chromatin remodeler are associated with syndromic and non-syndromic intellectual disability. Emerging evidence points to key roles for ATRX in preserving neuroprogenitor cell genomic stability, whereas ATRX function in differentiated neurons and memory processes are still unresolved. Here, we show that Atrx deletion in mouse forebrain glutamatergic neurons causes distinct hippocampal structural defects identified by magnetic resonance imaging. Ultrastructural analysis revealed fewer presynaptic vesicles and an enlarged postsynaptic area at CA1 apical dendrite-axon junctions. These synaptic defects are associated with impaired long-term contextual memory in male, but not female mice. Mechanistically, we identify ATRX-dependent and sex-specific alterations in synaptic gene expression linked to Mir137 levels, a known regulator of presynaptic processes and spatial memory. We conclude that ablation of Atrx in excitatory forebrain neurons leads to sexually dimorphic outcomes on miR-137 and on spatial memory, identifying a promising therapeutic target for neurological disorders caused by ATRX dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.