Abstract

Large-scale beta-MnO2/SiO2 core-shell nanorods were synthesized by hydrolysis process. The product was characterized by XRD, EDS, SEM and TEM. The thickness of the SiO2 shell layer is about 3 nm approximately 5 nm, which can be tuned by changing the amount of tetraethyl orthosilicate (TEOS) and the reaction time. The dielectric properties of the synthesized core-shell nanorods at the temperature range from 373 K to 773 K in X-band were investigated in detail and the mechanism of the dielectric response was discussed. The dielectric loss of the SiO2-coated MnO2 nanorods at 773 K was about twice than that at 373 K. The high dielectric loss is mainly attributed to the interfacial polarization and the electromagnetic impedance match between the SiO2 shell layer and MnO2 core layer. The quantitative formula between the permittivity of beta-MnO2/SiO2 core-shell nanorods and the thickness of the SiO2 shell is established, which can be used to tune the dielectric properties of the core-shell nanorods through controlling the thickness of the SiO2 shell layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.